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ABSTRACT
In this paper, we focus on authentication and authorization flaws

in web apps that enable partial or full access to user accounts.

Specifically, we develop a novel fully automated black-box auditing

framework that analyzes web apps by exploring their susceptibil-

ity to various cookie-hijacking attacks while also assessing their

deployment of pertinent security mechanisms (e.g., HSTS). Our

modular framework is driven by a custom browser automation tool

developed to transparently offer fault-tolerance during extended

interactions with web apps. We use our framework to conduct

the first automated large-scale study of cookie-based account hi-

jacking in the wild. As our framework handles every step of the

auditing process in a completely automated manner, including the

challenging process of account creation, we are able to fully au-

dit 25K domains. Our framework detects more than 10K domains

that expose authentication cookies over unencrypted connections,

and over 5K domains that do not protect authentication cookies

from JavaScript access while also embedding third party scripts

that execute in the first party’s origin. Our system also automat-

ically identifies the privacy loss caused by exposed cookies and

detects 9,324 domains where sensitive user data can be accessed

by attackers (e.g., address, phone number, password). Overall, our

study demonstrates that cookie-hijacking is a severe and prevalent

threat, as deployment of even basic countermeasures (e.g., cookie

security flags) is absent or incomplete, while developers struggle to

correctly deploy more demanding mechanisms.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Black-box Testing; Cookie Hijacking; Authentication; Authoriza-

tion; Large-Scale Measurement

∗
Part of this work was completed while at the University of Illinois at Chicago.

†
Sotiris Ioannidis is also with FORTH ICS.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417869

ACM Reference Format:
Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The Cookie

Hunter: Automated Black-box Auditing for Web Authentication and Au-

thorization Flaws. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’20), November 9–13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.

1145/3372297.3417869

1 INTRODUCTION
Web services have become treasure troves of sensitive data, ren-

dering user accounts high-value targets for attackers. Recently, au-

thentication flaws in popular web applications (or “apps”) exposed

sensitive data and allowed access to critical functionality of millions

of accounts [4, 5]. Reports have even implicated nation-state adver-

saries in attacks that ultimately aimed to steal user credentials [6, 7].

As such, authentication and authorization flaws in web apps are of

great importance [89, 98] as they pose a significant threat. However,

detecting such flaws is challenging.

As new technologies and features continue to emerge, web apps

are becoming increasingly complicated. This complexity is exacer-

bated by their rapid evolution and the addition of new functionality

and modules [35, 39]. This can result in the introduction of semantic

bugs whose composite nature [81] renders detection a challeng-

ing task [39, 70]. Moreover, the massive codebase that comprises

modern web apps is often developed by separate teams, which can

have a negative impact [72] and result in fragmented auditing pro-

cedures that do not fully capture the side effects that arise from

the interoperability of different components. Web apps can also

include legacy code, which is often a significant source of new vul-

nerabilities [33], further complicating internal auditing procedures.

To make matters worse, applicable security mechanisms are often

deployed in an incomplete or incorrect manner [32, 47, 52, 76, 92].

As a result, external auditing initiatives from researchers can sig-

nificantly contribute to the overall hygiene of the web ecosystem

by discovering vulnerabilities. However, the sheer scale of this is-

sue and the prevalence of obfuscation [78] mandate an automated,

black-box dynamic analysis.

In this paper we adopt such an approach and focus on flaws

that lead to the exposure of authentication cookies that allow ad-

versaries to access sensitive data or account functionality. While

recent studies have demonstrated that such flaws exist even in the

most popular websites [30, 44, 77], these studies relied on signifi-

cant manual effort and were, thus, inherently small-scale covering

a very limited number of domains. With surveys reporting that

Internet users in the US now have ∼150 password-protected ac-

counts [2], and tens of thousands of websites streamlining account

creation through Single Sign-On [44], it is apparent that manual

efforts are not sufficient. To that end, we develop a completely
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automated black-box auditing framework that detects authenti-

cation and authorization flaws in web apps and identifies what

sensitive/personal user information can be harvested by attack-

ers. Our system is designed to handle every step of the process,

including account creation and user-level interactions. Specifically,

our framework analyzes the characteristics and infers the access

privileges granted to cookies, while also evaluating the deployment

of security mechanisms that can prevent cookie-hijacking attacks.

The main design goal of our framework is to automatically audit

web apps in a black-box manner, without any prior knowledge of

the underlying app’s structure or code. The framework is driven

by XDriver, our custom browser-automation tool built on top of

Selenium, designed for robustness and fault-tolerance during pro-

longed interactions with web apps. As XDriver is geared towards

security-related tasks, we have implemented modules for evalu-

ating security mechanisms that are pertinent to our study (e.g.,

HSTS). The black-box auditing process is handled by a series of

components dedicated to specific phases of our workflow, including

components that employ differential analysis and a series of oracles

for inferring the account’s “state” reached by requests depending

on the cookies submitted and the level of account access granted

to those cookies. This requires identifying which cookies are used

for authentication and exploring the conditions for different attack

vectors under which they can be hijacked. Finally, our framework

includes a novel module that analyzes web apps and detects per-

sonal user data (e.g., name, email, phone number) that is accessible

using hijacked cookies. This is achieved through an in-depth in-

vestigation that analyzes the app’s client-side source, storage, and

URL parameters to detect the exposure of sensitive data.

Using our framework we conduct the first fully automated, com-

prehensive, large-scale analysis of cookie hijacking in the wild.

First, we crawl 1.5 million domains, and identify over 200 thou-

sand domains that support account creation. Subsequently, our

framework manages to fully audit almost 25 thousand (∼12%) of

the domains, requiring 8.5 minutes per domain on average. Our ex-

periments reveal that 50.3% of those domains expose their cookies

under different scenarios and, thus, suffer from authentication or

authorization flaws. To make matters worse, we find that security

mechanisms that could prevent these attacks are not widely adopted

(only 11.8% of vulnerable domains do so) or are often deployed in an

erroneous manner. In more detail, we find that 10,921 domains ex-

pose authentication cookies over unencrypted connections, which

can be hijacked by passive eavesdroppers and used to access users’

accounts. Moreover, 5,099 domains do not protect their authenti-

cation cookies from JavaScript-based access while simultaneously

including embedded, non-isolated, third party scripts that run in

the first party’s origin. With these scripts being fetched from 2,463

unique third party domains, users currently face a considerable

risk of malicious, compromised, or honest-but-curious third parties

reading their authentication cookies.

Due to the severity of the flaws detected by our system, it is

crucial that our findings are made available to developers so they

can patch their systems. While we have notified several vulnera-

ble domains, finding an appropriate contact point for such a vast

number of domains is infeasible; thus, we will set up a notification

service that allows developers to access the auditing results. In

summary, our main research contributions are:

• We develop a custom browser automation tool that transparently

offers robustness during prolonged interaction with web apps.

Our tool is tailored for security-oriented tasks and includes mod-

ules for assessing relevant security mechanisms. As our system

can streamline a wide range of research projects, our code will

be made open source.

• We develop a novel framework for the automated black-box

detection of flaws in web apps. Our framework incorporates a

series of modules and oracles that employ differential analysis

for automatically evaluating the feasibility of cookie hijacking

attacks under different threat models, and detecting the exposure

of personal user data across multiple dimensions. To facilitate

further research, we will share our code with vetted researchers

upon publication.

• We conduct the largest study of cookie-based authentication and

authorization flaws by auditing ∼25K domains. Our comprehen-

sive evaluation reveals a plethora of security malpractices and

misconfigurations, as 50.3% of the domains are vulnerable to at

least one attack.

2 BACKGROUND AND THREAT MODEL
Our framework focuses on detecting authentication and authoriza-

tion flaws that stem from the incorrect handling or protection of

cookies.While cookie hijacking is not a new attack vector, it can still

affect even the most popular websites (e.g., Google, Facebook) and

expose users to significant threats [77] including complete account

takeover [44]. We consider the following types of attackers.

Passive network attacker. This attacker, referred to as an

eavesdropper, has the ability to intercept and inspect unencrypted

HTTP traffic (but does not attempt to modify it). We assume this at-

tacker cannot intercept HTTPS traffic, and do not explore more elab-

orate, active attacks (e.g., SSL-stripping [60], cookie-overwriting [94]).

This means that any cookies that are not protected with the secure
flag can be intercepted by this attacker when appended to an HTTP

request. This can, e.g., occur naturally while a user browses a web-

site (since many websites serve certain resources over HTTP). An

important detail that amplifies the practicality of this attack is that

even when a domain supports HTTPS, browsers will by default

attempt to access the domain over HTTP before being redirected

by the web server to HTTPS [77]. While this can be prevented with

mechanisms like HSTS, they are still not widely adopted and are

often deployed incorrectly [52, 76].

Web attacker. This attacker can execute some JavaScript code

within the origin of the web app, e.g., through a cross-site scripting

(XSS) attack [45]. Another attack vector is introduced if the web

app includes a script from a third party domain without “isolating”

it in an iframe, effectively allowing it to execute in the first party’s

origin [65]; malicious scripts (e.g., malvertising [59]) or compro-

mised script providers can then read first party cookies [18]. We

define as third-party any scripts that are loaded from a different

domain [73, 82, 83], where the term domain will be used to refer to

the eTLD+1 domain throughout the paper. Consequently, cookies

that are not protected with the httpOnly flag will be readable by

client-side code and can be obtained by the attacker. We refer to

these two attack vectors as JS cookie stealing.
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Figure 1: Major phases in our auditing workflow.

It is important to stress that our framework does not search for

XSS bugs or malicious third party scripts; our system focuses on au-

tomatically inferring the feasibility of stealing authentication cook-

ies through JavaScript due to insufficient protection, and exploring

the subsequent privacy implications for users. As such, the numbers

reported on JavaScript-based cookie stealing are an upper bound

that is contingent on the presence of XSS vulnerabilities or mali-
cious third party scripts. Nonetheless, XSS vulnerabilities remain

one of the most common attacks against web applications [1] and a

plethora of detection systems have been proposed (e.g., [20, 82, 85]).

Similarly, recent work has highlighted the prevalence of (suspicious)

third party scripts [49, 55].

3 SYSTEM DESIGN AND IMPLEMENTATION
Here we present our framework and the methodology of the core

components of our black-box auditing process. Figure 1 depicts a

high-level view of the workflow for clarity, and to facilitate presen-

tation. In the following subsections we highlight each component

in our pipeline and provide design and implementation details.

3.1 Automated Account Setup
The first phase in our workflow is to automatically create accounts.

URL Discovery. This module follows a straightforward process

of crawling domains and terminating when both a login and a

signup form have been located. As a first step it explores the URLs

included in the public dataset by Ghasemisharif et al. [44]. If it

does not locate both types of forms, next it will crawl the target

web application. The crawl starts at the landing page and goes to a

depth of 2 – we opt for a more shallow crawl to reduce the crawl’s

duration and enable our large-scale study. Our framework collects

all links included in each page that point to the same domain, and

subsequently visits and inspects them. This step prioritizes links

that contain an account-related keyword (e.g., signin, register etc.)

and follows a breadth-first search (BFS) approach. If both types of

forms are yet to be found, the final step is to collect the first 30 links

from the homepage and inspect them, excluding previously-visited

URLs. This is based on the intuition that such pages are typically

easily accessible to users and not hidden behind multiple menus,

and are usually at the top of the page.

For each visited page, we extract any forms that resemble a

login or signup process, and a series of heuristics are employed for

detecting such forms within a page’s code. Specifically, for each

form we first count the number of text, email, password, checkbox

and radio type input fields. We also check which of those are visible

following the custom heuristics proposed by SSOScan [96]. If there

are no password fields we skip the form since it probably is not a

login or signup form (e.g., contact forms are common). If it contains

more than one password field we label it as a signup form since

such forms usually require the user to retype the password for

verification. If there is a single password field and a single text field

we label it as a login form, as this is the typical structure of such

forms. If there are more than one text fields or checkbox/radio fields

(accounting for the "remember me" option in login forms) the form is

labeled as a signup form. If the form has a more irregular structure

and has not been identified with these heuristics, our system resorts

to using two sets of regular expressions (one for login and one for

signup) for analyzing the HTML code and detecting elements that

allow us to label the form accordingly.

Automated sign up. Automating the account creation process

in an application-agnostic way is a challenging task. This is due to

the fact that websites have different requirements and constraints

regarding the type and format of information for the fields needed

for completing the registration. These vary and pertain to the num-

ber and type of fields (e.g., email, password, username etc.), as well

as to the different restrictions in what is considered a valid input.

For instance, a website might consider “+1 012 345 6789” a valid US

number while another might require a different format.

The Signup module iterates over the discovered signup pages

and attempts to fill each candidate form appropriately. We use a

manually-curated set of regular expressions that try to detect what

type of information each input element is expecting (e.g., email,

postal address, date). We first carefully assign labels to each of the

input elements by checking the for attribute of label elements, since

we expect them to be the most descriptive. If there is no match, we

move on to the element’s HTML code (i.e., its attributes), which

can reveal useful information about its type (e.g., an element of

type email or with a descriptive id like last_name). If our mod-

ule has yet to identify what type of information is expected, we

consider the text content preceding the element. While this is the

most common convention for labeling elements, developers are

not constrained and can structure their forms differently. We, thus,

follow a conservative strategy and consider these assigned labels

as possible labels, since we cannot be certain of the form structure

– in some cases the input element’s accompanying text might be

after the element. This is also why we prioritize any previously

identified labels, and consider the “possible” labels as a last resort.

If there is still no match, we use Google Translate to translate any

labels assigned to the element in English and repeat the aforemen-

tioned process. This is needed since our analysis is not limited to

English websites and foreign content is common. We refrain from

using Google Translate initially, since the previous steps might

reveal the type of field, allowing us to avoid the unnecessary API

calls. Finally, we resort to either a random string for text inputs or
a random selection for select and radio elements. To generate valid

inputs after having detected the element’s type, we use Python’s

Faker package.We also infer the input’s expected size by inspecting



its size and maxlength attributes and adjust our value accordingly.
After filling out the inputs we submit the form. At this point we

need to infer whether the signup attempt was successful or not.

We employ the following oracle that deems the signup process

successful if any step yields a positive result:

• Visit the homepage and check if any of the submitted identifiers

appear. The intuition is that if signup failed, websites would

not store the provided information. We refrain from making the

same check at the landing page after the form submission, since

a website might display identifiers in an error message.

• Visit the form’s URL and check if it is still displayed. The intu-

ition is that after a successful signup the website will not keep

displaying the form. However, we have observed cases where the

signup was successful, but the signup form was still displayed.

• Check if we received any emails from the domain. The intuition is

that a failed signup attempt would not trigger an email delivery.

• Attempt to login to the website with our automated Loginmodule

(described further down). A successful login attempt indicates

that the signup was successful.

If the signup is deemed successful we store the filled values and

end the signup process. Otherwise, we try to identify any required

fields in the form (i.e., by checking for the HTML required attribute

or an asterisk or the required keyword in the element’s labels)

and attempt to resubmit the form using only those, to reduce the

probability of error. If that fails once again, we move on to the

next form, until a successful registration is detected or all forms

have been processed. After registration we also handle any emails

sent by the domain, typically pertaining to account verification, to

ensure that our newly created account is valid. As we cannot be

certain of those emails’ structure or of any action that might be

required, we extract and visit all URLs included in the email and

try to detect commonly used keywords and phrases pertaining to

successful verification. Through empirical analysis we observed

that several websites might require the user to additionally click

on a button in that page to finish the process. Therefore, if we do

not detect any of the above keywords, we resort to clicking all

displayed clickable elements in the page.

Automated login. For us to complete the login process, we

visit the discovered login URLs (i.e., the ones that contain a login

form) and submit each candidate form with our test account cre-

dentials. Concluding whether the login attempt has been successful

is straightforward in most cases; the login oracle re-fetches the

page with the login form and checks whether the submitted form

remains in the page. If not, the login attempt is considered success-

ful. During our empirical analysis we observed that several poorly

designed websites kept displaying the form even after a successful

login; to account for such cases, if the form persists, our login ora-

cle additionally checks if any of our test account’s identifiers (e.g.,

email, username etc.) are now present in the homepage’s source

code. Similarly, it uses a set of heuristics for detecting whether any

logout buttons are displayed in the homepage. If either process

yields a result the login is deemed successful.

SSO Fallback. If our system is not able to successfully complete

the traditional account creation process, it alternatively identifies

whether the app supports Single Sign-On with one of the most

popular Identity Providers (IdPs) – we currently support Facebook

and Google. If SSO elements are discovered it attempts to automati-

cally complete the SSO process using test accounts that have been

registered in the IdPs. First we need to identify if the site actually

supports SSO; we have created a set of regular expressions that

identify potential HTML elements in a page that can be used for per-

forming SSO. The detection of such elements is performed during

the execution of the URLDiscovery module. The module terminates

if both login and signup forms have been located, regardless of the

discovery of potential SSO elements. This is due to the fact that the

available SSO options usually accompany the account related forms

(if a traditional login scheme is supported). Thus, when locating a

login or signup form we also detect if the site also supports SSO.

For each URL, we iterate over the candidate SSO elements and

click them. We prioritize elements that are displayed, based on the

intuition that sites are usually upfront about the available login

options. For displayed elements we use Selenium’s click method,

effectively replicating a user’s action. For hidden elements we re-

frain from trying to make those elements appear, which would

involve clicking over other elements and potentially leading to

unintended behavior and considerably increasing the process’ dura-

tion. Instead, we try to trigger their onClickmethod via JavaScript.

While this is generally effective, in some cases the candidate el-

ement is an outer wrapper element (e.g., a <div> element which

contains an <a> element), and clicking it via JavaScript will not

trigger SSO. Thus, for each non-displayed candidate element we

also consider its children elements. While this leads to additional

elements that need to be tested, we can quickly click on elements

and decide if one is an actual SSO element; the overhead induced

by this approach is negligible in practice.

The straightforward approach for inferring whether we clicked

the correct element is to wait for the appearance of a predefined

element, as a button that authorizes the app to access user data on

the IdP should appear. However, this is inefficient and expensive

as we would need to wait a sufficiently long time after clicking on

every element to ensure that the necessary steps (and background

server-communication) of the SSO protocol actually completed. We

opt for a more elaborate approach that relies on the fact that an

HTTP request is issued towards the IdP’s SSO endpoint when the

correct element is clicked. We setup a modified proxy in passive

mode which notifies our framework if such an outgoing request

is observed. This allows us to quickly iterate over all candidate

elements. The first time our system logs into a website we authorize

the app in the IdP by following a few easily-automated steps.

It is worth noting that inferring whether the SSO process was

successful is not necessarily equivalent to determining if our system

is logged in the web app. For instance, a website might require a

few extra steps to be taken (typically pertaining to account setup)

after the user clicks on the SSO button and authorizes the app in

the IdP; in this case our system will be in an intermediary state

where the user is not yet fully logged in. We employ two separate

oracles to decide if SSO completed and if we are logged in. The

SSO oracle first checks if the SSO element we clicked on is still

displayed. If not, the SSO was (most likely) successful. However, as

some websites keep displaying the elements even after a successful

SSO, the SSO oracle utilizes the SSO login oracle for further verifying
the successful completion of the SSO process. This oracle searches

for displayed account identifiers, logout buttons, and our IdP test



account’s profile photo which is often fetched from the IdP. If any

of those checks is positive, the SSO login is deemed successful. This

oracle focuses only on displayed elements, because we found cases

where a website that was authorized in the IdP loaded identifiers

provided by the IdP and displayed them in the page’s source (e.g.,

in an inline JavaScript object) without having logged the user in.

Some websites require a few extra steps pertaining to account

setup to be taken in order to complete the SSO. We detect and

automate this process as well, using a modified Signup module that

has a few minor changes in its workflow and oracle, which address

SSO-specific variations in the process. Typically, websites display

two options for completing the account setup after a successful

SSO, the first being to link the new SSO identity with an existing

account and the second about creating a new account.We detect any

clickable elements that indicate the latter using regular expressions

and iteratively click them. We then collect all forms displayed in

the page, as we do not have any knowledge of their structure (i.e., it

is common that such an account setup form might not even include

a password field). Finally, we iterate over the discovered forms, fill

and submit them, and consult our modified Signup oracle for each

submission. As such, the oracle has been modified so the check for

identifiers is done only on displayed elements, for the same reason

with the SSO login oracle. In addition, if all other checks fail, we

check if any password type fields were submitted in the signup

form. If that is the case, we proceed by performing a generic login
attempt using the discovered login forms.

False Positive/Ambiguous Login Elimination. After creat-
ing an account, we perform a final step to eliminate cases where

our oracles yield a false positive (i.e., consider a login attempt to be

successful despite not actually being logged in) or are not able to

disambiguate between being logged in or not for a specific website.

We send an HTTP request without appending any cookies and con-

sult our login oracle once again; if it claims we are still logged in

we mark the website as a false positive and abort the process. This

happens when a website does not follow any of the development

“conventions” that our oracles anticipate, or other mechanisms in-

terfere with the session’s state (e.g., a website displays an identifier

that was stored in localStorage even when no cookies are sub-

mitted). It is worth noting that while it is straightforward to clear

such storage mechanisms, we refrain from doing so since this can

have unexpected effects on a website’s intended functionality and

impact the operation of subsequent modules.

Captchas. Protecting account creation through captchas is com-

mon practice and, as such, creating a captcha solver can consid-

erably improve the coverage our system obtains. Initially, we im-

plemented a solver based on recent attacks against Google’s audio

reCaptcha [22, 80]. Unfortunately, reCaptcha’s advanced risk anal-

ysis system currently detects the use of WebDriver, which results

in Google not serving captchas to our framework. Since building a

stealthier captcha solver is out of the scope of our work, and fund-

ing human captcha-solving services to create accounts presents an

ethical dilemma, we opted to not handle such cases. However, due

to the popularity of domains that employ captchas, in our evalua-

tion we include a set of popular domains for which we completed

the account creation process manually. We stress, however, that

the ∼25K domains that comprise the bulk of our evaluation did not
require any manual intervention.

3.2 Cookie Auditor
To investigate whether users are exposed to session hijacking at-

tacks due to flawed or vulnerable authentication practices, the next

phase of our framework’s workflow relies on modules that analyze

the cookies set by a specific web app and identify potential hijacking

opportunities based on their attributes. As we require a method for

deducing with minimal overhead which cookies provide some form

of authentication, we design and implement a simple, yet effective,

algorithm that we present in Algorithm 1 (see Appendix). The core

idea is to inspect whether the discovered cookies are protected with

the appropriate security-related attributes and subsequently infer

which of those cookies are used for authentication.

Cookie attributes. Our CookieAuditor algorithm begins by

identifying which cookies set by the website are protected with the

secure and httpOnly attributes and groups them accordingly (line 2).

If a cookie has both attributes enabled, it will be included in both

sets. It then iterates over these cookie sets (8) and infers whether

the website is vulnerable to a specific attack from our threat model

based on the corresponding attribute. Before actually evaluating a

cookie set, it first checks if the set is empty. This indicates that the

site is vulnerable to the attack, e.g., if none of the cookies has the

secure flag set, an eavesdropper could successfully perform a cookie

hijacking attack (9-10), as described in prior manual studies [77].

On the other hand, if the attribute is present in one or more cookies,

the algorithm will either infer the result from the previously tested

set or evaluate this cookie set.

Evaluating a set means that we exclude it from the browser’s

cookie jar (i.e., those cookies will not be sent in the subsequent

request), issue a new HTTP request to the website, and consult the

login oracle to determine if we are still logged in (30-32). As can be

easily deduced, being logged in while excluding all cookies with a

specific attribute means that the website is indeed vulnerable to the

specific attack. However, if the exact same cookie set has been tested

before we can directly conclude whether the website is vulnerable

or not (14-15). Finally, in cases where the cookie set is a subset of

a previously tested set where our test account remained logged

in, we can again safely conclude that the website is vulnerable

for this attack as well (16-18). For instance, if we excluded the

set [A, B, C] and we were still logged in (i.e., vulnerable) then

testing the set [A, C] would also result in a logged in state, since

we would now send even more cookies than before. This is why we

prioritize larger cookie sets (we omitted this part of our algorithm

for brevity). Finally, after evaluating a cookie set, we send another

request containing all the cookies, to make sure our session is still

valid. (only if we were logged out after the test). If the session has

been invalidated by the server, we login again and update our cookie

values with those of the new session. This allows us to efficiently

identify if a website is susceptible to cookie hijacking and, if so, via

what means. In the worst case scenario, our approach would need

9 requests, i.e., 3 requests per security-related cookie attribute. It

is important to note that this technique has the drawback of not

revealing which of the cookies are actually authentication cookies.

Authentication Cookies. To further analyze the root causes

of authentication flaws, our framework needs to be able to identify

the subset of authentication cookies among all the cookies that

are set. Mundada et al. [64] proposed an algorithm, however, their



approach overlooks certain cases and can lead to incorrect results.

We build upon the core algorithm they proposed and modify it to

correctly handle additional cases. Their proposed algorithm starts

by considering only the cookies set at login time (login cookies)
and generating a partially ordered set (POSET ) of every possible

combination. Since the search space is exponential, and in many

cases infeasible to test all combinations, the algorithm establishes

a series of rules based on the outcome of certain tests to reduce the

testing time. The core algorithm works as follows:

• Alternate by testing one round from the bottom of the POSET

(i.e., disabling cookies from a full cookie set) followed by a round

from the top of the POSET (i.e., enabling cookies from an empty

cookie set). According to their description, rounds are followed

in an incremental manner and all cookie sets for a given round

are tested consecutively (e.g., all cookie sets where only 1 cookie

is disabled, then all cookie sets where 1 is enabled etc.). This is

also the root cause that leads to incorrect results in certain cases,

as we detail next.

• If a disabled cookie set causes the test to fail (i.e., the user is

logged out), then all subsequent cookie sets that do not contain

this set can be skipped.

• If an enabled cookie set is found to cause the test to succeed (i.e.,

the user remains logged in), then all subsequent cookie sets that

contain this set can be skipped.

• If a cookie that was not set at login time is detected to be part

of an authentication combination, a similar nested process is

executed for the non-login cookies and the login cookie array is

expanded to include these cookies.

While this approach is generally effective, we have identified

scenarios where it yields incorrect results. To illustrate such a case,

consider the following example: if a website has two authentica-

tion cookie combinations, e.g., [A,B] and [C,D], the algorithm will

first set a rule when disabling two cookies. Specifically, when dis-

abling [A,C] none of the authentication cookie combinations we

are looking for will be complete, and the user will be logged out

of the web app. This results in establishing the rule “any cookie
set that does not include [A,C] should be skipped“. Later on, when
disabling the set [B,D] (which satisfies the first rule), the user will

again be logged out, leading to a similar rule for this set as well.

At this point the ruleset dictates that any set that does not include

[A,C] or [B,D] will be skipped. However, in the very next round (i.e.,

when enabling two cookies), when checking whether the actual

authentication cookie combinations should be tested, the algorithm

will skip them as they do not satisfy the above ruleset. As a result,

the actual authentication cookie combinations will not be inferred.

Thus, we cannot blindly follow such rules when enabling cookie

sets. This, however, introduces the risk of a major performance

penalty. Consider a second example of a website that has two au-

thentication combinations, e.g., [A] and [B]. The first rules the

algorithm will set will be when enabling a single cookie. Specifi-

cally, when only enabling [A] the user will be logged in and a rule

will be set, dictating that “any cookie set that includes [A] should
be skipped“. Likewise, when enabling [B] a similar rule will be set.

In the next round (i.e., when disabling two cookies) the only set

that will be tested will be the one not containing [A] and [B], as it
is the only one that respects the current ruleset, and the user will

be logged out. This results in the rule “any cookie set that does not

include [A] or [B] should be skipped“ being set. Next, when enabling

two cookies, and having established that we cannot follow the last

rule when enabling cookies, the algorithm will then test all sets of
length two that do not contain any of the two authentication cook-

ies. The following rounds of the algorithm behave similarly (i.e.,

disabling/enabling three cookies and so on). However, we can tell

that the algorithm has already detected the authentication cookie

combinations and should not try any more tests.

To avoid this performance issue, we modify the algorithm to

respect such rules when enabling cookies, but in a slightly different

manner: cookie sets that result in the user being logged out when

disabled are flattened into a vector (e.g., the ruleset [[A,C], [B,D]]

from the first example becomes [A, B, C, D]) and we safely skip

the cookie sets that do not include any of these cookies. In our

first example this results in the authentication cookie combinations

being detected. In the second example it results in not testing any

sets that are redundant after detecting the correct combinations.

We also note that while we label them as authentication cookies,

since they lead to the exposure of user identifiers, this might be the

result of flaws in the web app’s authorization policies, and not due

to them actually being designed as (or intended for) authentication.

Nonetheless, our goal is not to infer the developers’ intention but

to identify which cookies lead to (full or partial) authentication.

3.3 Privacy Leakage Auditor
Apart from automatically detecting flaws that expose authentica-

tion cookies, our goal is to also identify what personal or sensitive

user data attackers can obtain. We develop PrivacyAuditor for lo-

cating leaked user information following a differential analysis

methodology. Our framework first effectively replicates a session

hijacking attack; it creates a fresh browser instance and includes all

stolen cookies, i.e., the ones that are not protected with the corre-

sponding cookie attributes. If our system has labelled a specific web

app as susceptible to both eavesdropping and JS cookie stealing

attacks we only simulate the eavesdropping attack to demonstrate

the privacy threat posed by attackers that are less sophisticated due

to space constraints. Our system also deploys a logged-out browser

alongside the authenticated browser and then proceeds with col-

lecting links of interest. The module focuses on URLs that match

account related keywords (e.g. profile, settings) and also collects

the top 30 links that appear in the main browser but not in the

logged-out one (or less if not that many exist). Typically, we expect

those links to point to restricted areas of the website where user

information, possibly sensitive, will be stored.

We check each page for user information that was supplied dur-

ing the signup process. If SSO was used, our system also checks

for information that the web app might have pulled from the IdP

(we have populated our Facebook and Google profiles with ad-

ditional information). We inspect the rendered page source once

JavaScript-generated content has finished loading. Since user data

can be leaked in ways that are not directly visible to the attacker,

our system also inspects other potential leakage points, including

cookies, local and session storage, and the page’s URL (we do not

look at outgoing connections since we are not interested in what

information is shared with third parties, and leaked identifiers will

already be present in one of the locations we search). To account for



cases where user information may be “obfuscated”, we also check

for encoded values of all the identifiers using common encoding

(base64, base32, hex, URL encodings) and hashing techniques (MD5,

SHA1, SHA256, SHA512). While we are able to capture obfuscated

values of all user-specific information, in our experimental evalua-

tion we only discuss obfuscated passwords and emails; this is due

to their sensitive nature and because hashed emails can constitute

PII and in certain cases are easily reversible [3, 37, 61].

3.4 Browser Automation
At the heart of any web app auditing framework lies the browser

and, thus, it is imperative that our framework is orchestrated by a

robust browser automation component. In practice, while Selenium

is a powerful tool, it is better suited for testing scenarios when the

web app’s structure and behavior are known in advance. However,

when conducting a complex, large-scale analysis there is no a priori
knowledge of either. There are also numerous scenarios where un-

expected behavior, structure changes, or software crashes impact

browser automation functionality. For instance, at any moment

during the execution of a module there might be an unexpected

popup (e.g., an alert). This can block all other functionality, such

as fetching and interacting with elements in the page. Moreover,

current error raising and handling support can lead to ambiguous

states; e.g., when Selenium’s Chromedriver crashes (which is a

common issue) a TimeoutExceptionmight be raised, which is also

what happens when a website actually times out. Thus, we need a

way to handle such obstacles efficiently whenever they occur with-

out aborting and restarting the whole process. Finally, while other

well-designed options exist, e.g., Selenium-based OpenWPM [40],

we find that they focus on the browser setup, management and

synchronization parts of automation, with little focus on dynamic

interaction (e.g., element clicking, form submission) which is a

critical aspect of our study. In addition, while Puppeteer [16] does

offer interaction functionality, it suffers from the same robustness

issues as Selenium, which our system tackles (e.g., element stale-

ness, crash recovery, robust error handling). Moreover, Puppeteer is

specifically designed for Chrome/Chromium, while we aim to make

our automation component compatible with different browsers.

To address these limitationswe developXDriver, a custom browser

automation tool designed for security-oriented tasks that offers im-

proved fault-tolerance during prolonged black-box interactions

with web apps. XDriver is built on top of Selenium and the official

Chrome and Firefox WebDrivers [11, 13], and will be made open

source. We extend Selenium’s high level WebDriver class to en-

hance our system’s robustness by addressing the aforementioned

challenges in a way that is transparent to the caller scripts. Due to

space limitations here we present the most prominent exceptions

and how our system handles them, as well as a number of useful

auxiliary mechanisms we implement. Our extensions amount to

approximately 1,500 lines of code.

Invocation. XDriver extends Selenium’s WebDriver class and

declares a custom invoke method which accepts a parent class

method as an argument (e.g., WebDriver.find_element) and an

arbitrary number of named and unnamed arguments. Invoke then

calls the passed method in a try-except block, catches any raised

exception and either calls the appropriate exception handler or

returns a default value. XDriver then overrides all of WebDriver’s

methods to call their parent class counterparts via invoke.
Element staleness. As our auditing requires prolonged, multi-

phase interaction with web apps, page elements frequently become

“stale”, which creates complications and can lead to crashes. XDriver

is designed to handle such cases transparently and robustly. All

interactions start by fetching a page element, e.g., based on the

id attribute, and proceed with processing that element. If in the

meantime this element is deleted or, more commonly, an asynchro-

nous page load or redirection occurs, a StaleElementReference-
Exception is raised when interacting with the element, indicating

that it is no longer attached to the DOM. However, while from a

user’s perspective the element might still be present in the page,

from Selenium’s point of view it is a new element under a new ob-

ject reference, with no relation to the previously returned element.

To handle this, when a find_element_by method is invoked, the

returned element’s object reference is stored as the key in a hash ta-

ble, with a tuple containing the invoked method and its arguments

as the value. Then, whenever such an exception occurs, the given

element’s reference is retrieved from that hash table and XDriver

attempts to re-fetch it by invoking the stored method. If the element

is found, the old element’s object is updated transparently with the

newly returned element, and the initial requested operation that

raised the exception is retried. Otherwise, the exception is raised

since the element truly does not appear in the page.

Handling crashes and timeouts.WhenChromedriver or some

other component (e.g., intermediate proxy) crashes and a Timeout-
Exception is raised, our XDriver module detects the crash, trans-

parently restores the browser instance and state and eventually

fulfills any module’s request that was interrupted by the crash.

Specifically, it launches a new browser instance, reloads the cur-

rent browser profile to maintain state and updates its own object

reference with that of the new one, so as to transparently update

all references of the driver held by the framework modules. It also

obtains the last known URL and retries the interrupted operation.

The StaleElementReferenceException handler is extremely use-

ful in this case, since all retrieved web element objects will have

become stale due to the browser reboot.

Auxiliary mechanisms. Several other mechanisms have been

implemented in XDriver, which further aid our main framework’s

functionality, such as a retry mode, a configurable built-in crawler

and our form-filling functionality described previously. Due to

space constraints we provide more details in the Appendix. Overall,

all of the above enhancements allow for more fault-tolerant inter-

action with web apps, reduce code complexity, and allow our main

framework modules to focus on their specific tasks.

Security mechanisms. Another important feature is the de-

tection and evaluation of security mechanisms pertinent to our

study. HTTP Strict Transport Security (HSTS) instructs a user’s

browser to connect to the HSTS-enabled domain only over HTTPS

for a specified amount of time, even if an explicit HTTP URL is

followed or typed in the address bar by the user. While this seems

fairly straightforward to deploy, domains often do so incorrectly or

partially [52, 76, 77]). To evaluate deployment and detect miscon-

figurations, our module first checks whether the domain is in the

Chromium preload list [12] and, if not, uses a passive proxy to cap-

ture the target website’s redirection flow from its HTTP endpoint



to HTTPS. For each redirection, it stores the HSTS policy (if one

is sent) and assesses whether the (sub)domain is indeed protected.

Our module detects all the misconfigurations and errors presented

in [52]. We note that while we implement mechanisms that are

relevant to this work, XDriver’s modular design streamlines the

addition of other security mechanisms.

4 EXPERIMENTAL EVALUATION
We experimentally evaluate our black-box auditing framework

and present our findings from the largest study on cookie-based

authentication and authorization flaws in the wild.

Datasets. We use two different versions of the Alexa Top 1 mil-

lion list. The first dataset was fetched on 09/14/2017; this dataset was

useful for guiding the design and implementation of our framework.

However, since recent work has revealed that domain ranking lists

exhibit significant fluctuation evenwithin short periods of time [74],

we also obtained a second up-to-date version on 05/07/2019, when

it was time to conduct the final evaluation. All the experiments

presented here were conducted between May-October 2019 on a

combined dataset that included a total of 1,585,964 unique domains.

Workflow statistics. One of our main goals is the ability to

conduct automated black-box auditing of modern web apps with-

out knowledge of their structure, access to the source code, or input

from developers. The complexity and often ad-hoc nature of web

development render this a challenging task, and various obstacles

can prevent the successful completion of a given module. Figure 4

in the Appendix provides statistics on the number of domains for

which each phase of our workflow was successful. In general, our

auditing modules are highly effective, successfully completing their

analysis for 93-98% of the domains they handle. Automated account

creation presents the most considerable obstacle; namely, out of

the 168,594 domains for which we identified a signup option, we

successfully registered and logged into 13.7% of them, while in 2,066

cases our system managed to login via SSO, out of which 346 were

a fallback after a failed signup attempt. It is worth noting that for

domains where we detected a signup option but were not able to

create an account, 19,491 (∼13.8%) embedded Google’s reCaptcha.

Yet our framework is still able to create accounts on 25,242 domains,

accounting for almost 12% of the domains for which we have identi-

fied a signup option – for comparison, prior related studies analyzed

25 [77] and 149 [64] domains. In studies with a different focus, Zhou

and Evans used SSO to audit 1,621 domains for SSO implementation

flaws, while DeBlasio et al. [36] explored the risk of password reuse

by creating accounts in over 2,300 domains. In other words, our

study is several orders of magnitude larger than prior studies with

a similar focus, and at least one order of magnitude larger than

studies that employed some form of automated account creation.

We provide more details on our system’s effectiveness and false

negative rates in the Appendix.

Cookies.Audited domains set an average of 14.02 cookies, while

susceptible domains set 1.21 authentication cookies and have 1.1

authentication combinations on average. In Table 1, we show the

number of domains that expose their authentication cookies, i.e.,

do not protect them with the corresponding cookie attributes.

Eavesdropping.We find that 12,014 unique domains do not pro-

tect their authentication cookies with the secure flag, even though

Table 1: Number of unique domains that do not adequately
protect their cookies from specific attacks.

Attack # of Domains (%)

Eavesdropping 12,014 (48.43%)

No HSTS 10,495 (87.36%)

HSTS Preloaded 64 (0.53%)

Full HSTS 188 (1.56%)

Faulty HSTS

- Protected 736 (6.13%)

- Vulnerable 426 (3.55%)

Final Vulnerable 10,921 (90.9%)

JS cookie stealing 5,680 (22.9%)

Total 12,484 (50.33%)

1,815 of those set the flag for at least one of their cookies. How-

ever, web apps might make use of HTTP-Strict-Transport-Security

(HSTS), which can prevent the leakage of those, otherwise exposed

cookies. Merely checking for the presence of HSTS headers in the

web app’s responses is not sufficient, since prior studies have found

that developers often deploy HSTS incorrectly [52, 76] or do not ad-

equately protect their entire domain [77]. As such, our framework

includes a module for evaluating the correctness and coverage of

HSTS deployment for domains that are vulnerable to eavesdropping

(the other attacks are not affected by HSTS).

We find that the situation has not improved much compared to

prior studies, as the vast majority of domains do not deploy HSTS.

While flawed HSTS deployment remains common, we find that

63.3% of the domains that have a faulty deployment do manage

to prevent our cookie hijacking attacks. This is because the set of

(sub)domains the auth cookies are sent to are protected by HSTS.

For instance, if example.com deploys HSTS properly on the www
subdomain, but leaves the base domain unprotected, and at least

one auth cookie has its domain attribute set to www.example.com,

then there is no way for an eavesdropper to retrieve this cookie.

The most common misconfiguration is not enabling HSTS on the

base domain (696 domains), out of which 143 attempted to set

HSTS over HTTP. The remaining domains, while properly setting

HSTS on their main domain, did not use the includeSubdomains
directive, thus potentially leaving certain subdomains exposed. We

also find that out of the remaining domains only 99 employ CSP’s

upgrade-insecure-requests directive. While this reduces the at-

tack surface, these domains remain vulnerable since this mechanism

does not upgrade top-level navigational requests from third-party

sites or the initial request (e.g., when a user opens a new tab and

visits a site). Overall, 10,921 domains are vulnerable and expose

cookies to eavesdroppers even when accounting for the presence of

relevant security mechanisms. We further correlate these domains

with the Single Sign On data released by [44] and found that four

of these domains are also SSO identity providers (Amazon, Bitly,

DeviantArt, GoodReads) and have at least 1,346 unique relying

parties, out of which 138 have been audited by our system; 87 were

found secure and 51 vulnerable to at least one of our attacks.

JS cookie stealing.We find that users face a considerable threat

due to their authentication cookies being accessible via (malicious)

JavaScript, as a total of 5,680 domains do not protect them with



Table 2: Number of domains for different values of authenti-
cation cookies and combinations of authentication cookies.

1 2 3 4 5 6 7

Auth combos 10,878 1,110 39 10 3 - -

Auth cookies 9,912 1,700 364 54 7 2 1
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Figure 2: Percentage (left) and absolute number (right) of
vulnerable domains per ranking bin.

the httpOnly flag. Our framework’s analysis of those domains re-

veals that 5,099 include at least one embedded 3rd party script (i.e.,

not isolated in an iframe) that runs in the 1st party’s origin and

has “permission” to read the user’s 1st party cookies. These are

fetched from 2,463 unique 3rd party domains. To make matters

worse, only 239 of those use the Subresource Integrity (SRI) fea-

ture [15] to prevent the manipulation of fetched scripts, and only

one domain protects all loaded scripts. Similarly to [31], we find

that all SRI-protected scripts are libraries (e.g., jquery). It is impor-

tant to emphasize that this attack explores the potential threat from

compromised or rogue 3rd parties, and that our numbers do not

reflect active attacks currently underway in the wild. While our

study’s focus is not on detecting malicious scripts actually stealing

users’ cookies, we consider this an interesting future direction.

We emphasize that the 5,680 domains are not necessarily vul-

nerable to session hijacking through XSS, since other prevention

mechanisms might be in place. For instance, Web Application Fire-

walls (WAFs) [38, 54] or Content Security Policies (CSP) [92] could

be deployed tomitigate XSS attacks which could also prevent cookie

stealing. Nonetheless, recent work has shown that even such de-

fense mechanisms can be bypassed [57]. As such, our findings

constitute an upper bound for web apps that are vulnerable to

cookie-stealing via XSS. Nonetheless, while adoption of httpOnly
is not as limited as in the past [95], it remains an important issue.

Auth combos. Table 2 breaks down the AuthCookies results

and reports the number of domains with the corresponding number

of authentication cookies and combinations. An interesting observa-

tion is that 435 of the domains that havemore than one combination

contain at least one secure combination among them, yet remain

susceptible to attacks due to other combination(s) being exposed.

This highlights how the ever-increasing complexity in web apps

leads to authorization flaws. We also find that 76 domains contain

cookie combinations that are correctly detected by our approach

for which the algorithm from [64] returns incorrect results.

Popularity.We break down the vulnerable domains based on

their Alexa rank in Figure 2. In general, our framework detects

Table 3: Personal user data that can be obtained by attackers.

Data So
ur
ce

C
oo

ki
es

St
or
ag
e

U
R
L

Total (%)

Email 6,894 776 174 51 7,130 (61)

Email hash 885 68 10 0 930 (7.98)

Fullname 4,287 198 170 44 4,330 (37)

Firstname 648 58 8 10 686 (5.9)

Lastname 618 86 19 13 665 (5.7)

Username 1,856 339 48 175 1,956 (16.7)

Password 2 20 0 0 22 (0.19)

Pswd hash 12 57 0 0 68 (0.6)

Phone 1,594 8 7 2 1,598 (13.7)

Address 656 0 0 1 656 (5.6)

VAT 17 0 0 0 17 (0.15)

Workplace 540 3 3 1 543 (4.6)

Total (%) 9,122 (78) 1,236 (10.6) 314 (2.7) 290 (2.5)

more vulnerable domains in the highest ranking bin. This can be

partially attributed to popular websites being more likely to support

account creation (we find twice as many such domains in the most

popular bin compared to the least popular one), while the process

succeeds for roughly 11 − 13% of domains across all bins. We also

break down the vulnerable websites based on their categories (e.g.,

online shopping) in the Appendix.

Privacy leakage. In Table 3, we break down the personal or

sensitive information that an attacker can acquire upon success-

fully hijacking a user’s cookies, as detected by our PrivacyAuditor

module. We also report the total number of domains leaking such

information, grouped per sensitive field (e.g., email) and also based

on the source of leakage (e.g., page source). While a domain might

appear in different columns of the same sensitive field, or different

rows of the same source of leakage, it is only counted once in the

corresponding totals. In general, we find that the page’s source is

the most common avenue of exposure, but passwords are typically

exposed through cookies. Furthermore, 59 out of the 68 hashed

passwords detected by our system are MD5 hashes, which do not

offer much protection against offline brute-forcing attacks. In prac-

tice, the attacker could potentially recover the password and obtain

full control over the victim’s account in those services; password

reuse [9, 69] can result in attackers accessing accounts in other

services as well. Apart from common identifiers like emails and

usernames, many domains expose highly sensitive data like home

addresses and phone numbers. Overall, an abundance of data is

exposed that can be used for doxxing [79], and a plethora of scams

including targeted phishing [48] and identity theft [21].

System performance. In Figure 3 we show the total time in

seconds required by each module in our framework. Since some

modules might fail for certain domains, the different CDFs have

been calculated using their corresponding totals. The total time

required for auditing websites for attacks (i.e., all modules up to

CookieAuditor) is denoted as Total Attack. The total time required

for the analysis including the execution of AuthCookies and Priva-

cyAuditor is denoted as Full Analysis. We find that our framework’s

performance is suitable for large-scale studies as half of the domains

can be completely audited within 5 minutes and 90% in less than 17
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Figure 3: Time required by each module of our system.

minutes. While certain domains in the long tail of the distribution

require considerably more time, this is typically due to latency is-

sues with their specific servers. While Webdriver crashes can affect

performance, our XDriver optimizations minimize their impact by

transparently recovering the browser’s state.

Popular domains. While our main goal is to automatically ex-

plore the feasibility of cookie hijacking at scale, popular domains

are of particular interest because they are used by hundreds of

millions of users and, thus, can have a greater impact if vulner-

able. Considering that our framework’s entire workflow is fully

automated and that app-agnostic account setup is extremely chal-

lenging, we opt to manually assist with the account setup for a

subset of the most popular domains. Specifically, we consider the

top 1K domains, where we identified 698 account-based websites.

Out of those, 95 were already fully handled by our framework. For

the rest, we manage to manually create accounts in 206 domains,

which we provided to our framework to complete the automated

auditing process. The remaining domains either protected their

login forms with reCAPTCHAs, detected the presence of our web-

driver, or requested information during signup that we were unable

to provide (e.g., phone numbers for SMS verification, valid SSN etc.).

Moreover, for 45 websites our Login Oracle could not disambiguate

between being logged in and logged out; when sending a HTTP

request without any cookies our account would still appear to be

logged in. In total, we audited 301 popular websites (the additional

206 domains were not included in our previously reported numbers,

thus, pushing our total analysis to over 25K domains).

We find that 149 are vulnerable to eavesdropping, 46 of which

were fully handled by our framework. Only 10 domains deploy

HSTS effectively, while another 30 (20.13%) use HSTS but remain

susceptible due to faulty deployment. For JS cookie stealing, 115

domains were found susceptible and 104 include at least one embed-

ded 3rd party script (from 266 domains) – only five make use of SRI.

Overall, 57.81% of the domains do not provide adequate defenses,
which is alarming considering their massive user base.

Hijacking validation. To manually validate our results and

ensure that an attacker can actually access victims’ accounts, we

conduct an exploratory experiment on domains that were fully
handled by our framework. We randomly select ten and hand-pick

another ten domains out of Alexa’s Top-1K, and randomly select

another ten from the remaining domains, and simulate cookie hi-

jacking attacks. We setup a browser instance where we log in the

website and capture all cookies that are exposed depending on the

threat model. Next, we launch a new browser with different char-

acteristics (user agent etc.) on a different machine, in a different

network subnet, where we include the stolen cookies and visit the

website. We manually interact with the website to detect the extent

of access the attacker obtains. We do not set a time limit; instead

we opt for an exhaustive approach where we try to identify all user-

specific functionality that should be tested. We detail our findings

in the Appendix. For the Top-1K random subset, we get full account

access for seven domains (i.e., all tested operations succeeded), and

partial access for three domains. For the other random subset we

get full access in nine out of ten domains. Indicatively we can view

and modify account settings, preferences, shopping lists, orders

and subscriptions and post comments. In five of all the domains we

could also change the user’s password without knowledge of the
current password. For the manually selected popular domains, we

get full access in five domains, partial access in four.

This highlights a significant advantage of cookie-based account

hijacking over credential-based (e.g., phishing): additional fraud-

detection checks employed during login [24] (e.g., IP geo-location [71],

comparison of browser fingerprints [50]) are ommitted because the

cookies are part of a session that has already been verified as legiti-

mate (i.e, when the victim logged in). While certain attackers can

pass geo-location checks (e.g., using an IP address near the user’s

location [67]), deceiving browser-based security checks is signifi-

cantly more challenging. While spoofing the victim’s fingerprints

has been theorized [19] it has not been demonstrated in practice.

Surprisingly, throughout all our experiments we identified only one

domain (Cloudflare) where we could not access the victim’s account

from the attacker’s machine, indicating additional machine-specific

checks that we have not come across in any other domain.

5 DISCUSSION
Automated account creation. Our experimental evaluation re-

vealed that automatically creating accounts is a significant chal-

lenge. While our current implementation allowed us to audit orders-

of-magnitude more domains than prior manual studies [30, 77], we

plan to explore the adoption of more sophisticated heuristics that

automatically infer the predicates of account generation in a specific

web app and create corresponding inputs. Automatically detecting

and parsing error messages returned by the app can be used as

feedback for inferring which form fields’ format is violated. This,

however, is a challenging task as, again, web developers are not

constrained to a specific format or structure for returning such

messages. Furthermore, each form input variation requires a form

submission, which can lead to a significant impact to the overall

performance and also trigger anti-bot mechanisms. Certain manda-

tory resources can also prevent our system from completing the

process, e.g., an app may require a valid phone number in a specific

country. While attackers can leverage “shady” phone providers [86],

this remains an important obstacle for researchers.

Privacy leakage inference. Our system evaluates the leakage

of personal or sensitive user information by detecting specific iden-

tifiers. In practice, information can be implicitly leaked, e.g., per-

sonalized results in search engines or e-commerce systems can

reveal sensitive data (typically exposed through site-specific func-

tionality). As part of our future work, we plan to explore the use



of user-action templates that are based on the website’s category

(e.g., search engine, e-commerce), intended to elicit personalized

results. Additionally, it is possible that some user information might

already be publicly available on the same or a different website and,

thus, the detected identifiers do not constitute actual leakage. While

leakage can be highly contextual (e.g., a user’s email address being

publicly available in general versus a local eavesdropper being able

to match that person to their email address) we consider this an

interesting challenge and plan to explore the feasibility of detection

schemes that disambiguate between public and private information.

Countermeasures, disclosure, ethics.Our framework discov-

ered flaws that are exposing millions of users to significant threat.

We emphasize that no user accounts were affected during our exper-

iments – we only used test accounts. It is also crucial that devel-

opers are informed of our findings and address them. While the

adoption of cookie security flags is more straightforward, correctly

deploying HTTPS and HSTS will likely be more challenging for

developers [32, 51–53]. For disclosure we leveraged the insight pro-

vided by prior work [58, 73, 84] and sent direct notifications to the

affected domains for which we could find a valid contact email

address. Specifically, we initially collected security.txt files [10],

that typically include such contact points. This method proved to

be the most ineffective, as such files are not widely adopted, i.e.,

only 23 domains had them. We then used an off-the-shelf email

harvester tool for search engines [8]. Next, we crawled the websites

starting from their home page and visiting all contact related URLs,

as well as the top 10 first level links.We also collected each domain’s

WHOIS record and searched for registered abuse addresses. We fil-

tered all collected email addresses to ensure that they belong to the

susceptible domain, so as to avoid sending our security-sensitive

findings to unrelated parties. Overall, this process yielded 5,373

email addresses which we used for notification. For the remaining

domains we sent our notification to standard aliases (security,
abuse, webmaster, info) [73, 84]. We also manually searched

for contact points for all domains we explicitly name in the paper

(apart from 2 that did not have a contact email or form). For the

notification process we used an institutional email address to in-

crease credibility and provided additional details and remediation

advice to all websites that responded. All the responses we received

acknowledged our findings, except one case where the developer

persistently misunderstood the technical aspects of cookie hijack-

ing. While we followed a best-effort approach to directly notify

affected domains, it is infeasible to do so for all of them. Thus, we

will also setup a notification service where developers can obtain

our reports after proving ownership of a given domain.

HSTS issue. During our experiments we uncovered an unex-

pected behavior in Chromewith HSTS preloading; we observed that

it did not work as expected in slightly older Chrome versions and

the initial request to a preloaded domain was, in fact, over HTTP.

After communication with the Chromium team they informed us

that their policy dictates that any Chrome version more than 70
days old does not enforce HSTS preloading because such hardcoded

information is considered stale. This has significant implications for

users that do not update their software on time, which is common

behavior [62, 88, 91]. To the best of our knowledge this issue with

HSTS has not been mentioned in prior studies.

Code sharing. Our browser automation tool will be made open

source as it can facilitate various research projects, especially those

focused on Web security. However, publicly releasing our auto-

mated account creation modules poses a significant risk, as they

are directly applicable to a plethora of real world attacks and could

be misused for malicious purposes; the capabilities of our system

far surpass the capabilities of such tools typically found in under-

ground markets [68]. To that end, and to further contribute to the

community, we have opted to make these modules available to

vetted researchers upon request.

6 RELATEDWORK
Cookies and sessions. Several prior studies have explored cer-

tain aspects of authentication and authorization flaws in web apps.

Sivakorn et al. [77] manually audited 25 popular domains (and

their respective mobile apps and browser extensions). Calzavara et

al. [30] recently implemented black-box strategies for identifying

session integrity flaws using a browser extension, and audited 20

popular websites where they found several vulnerabilities under

different threat models. However, the most challenging parts of the

process are not automated and app-agnostic (e.g. account creation,

status oracles), rendering large-scale deployment and analysis infea-

sible. Neither of these studies included the JavaScript-based threats

that we explore. In another work, Calzavara et al. [27] conducted

a large-scale study on TLS vulnerabilities that can enable session

hijacking. Kwon et al. [56] exploited the shortcomings of a specific

TLS cipher suite and proved that, under certain assumptions, it

is possible to disable cookie attributes in HTTPS traffic. Finally,

Jonker et al. [46] proposed a system for automated login that can

enable post-login studies. However, their system does not handle

account creation which is the most challenging process.

While these studies provide useful insights, they are inherently

small-scale, require significant manual effort, or are complimentary

to our work as they focus on different problems that enable session

hijacking (e.g. TLS vulnerabilities). In contrast, our work achieves

orders of magnitude larger coverage of audited domains, analyzes

the root causes of such attacks and further explores the use of

other defense mechanisms, as well as the privacy leakage users face.

Orthogonal to our work are prior studies that proposed defenses

against session hijacking attacks [17, 23, 28, 29, 34, 66, 87].

Cookies and browsers. Singh et al. [75] built a framework for

analyzing the usage of browser features in the wild and detecting

browsers’ access-control flaws, e.g., secure cookies being sent over

HTTP. Franken et al. [43] evaluated how different browsers and anti-

tracking extensions handle third party requests and showed that

cookie-bearing third party requests can be leaked by all browsers,

even in the presence of protectionmechanisms like sameSite cookies.
Zheng et al. [94] studied how cookie integrity can be diminished by

various adversaries due to specification violations in browser and

server-side implementations, and demonstrated practical attacks

on popular websites. Cookies are also commonly used for tracking,

and Cahn et al. [25] explored their use through empirical large-

scale measurements and reported the prevalence of third party

cookies. Moreover, Englehardt et al. [41] showed that a passive

eavesdropper can exploit third-party cookies to reconstruct up to

74% of a user’s browsing history. These studies are orthogonal to



our work since we do not examine browser shortcomings in terms

of leaking cookies that can lead to session hijacking; instead, we

explore the effects of developer malpractices which, however, can

be exacerbated by browsers’ inability to properly handle cookies.

Security headers and policies. Chen et al. [32] examined the

CORS specification, and browser/server-side implementations, and

found security issues in all cases, several previously unknown,

which could even lead to data theft and account hijacking. Kranch

et al. [52], performed the first in-depth study on HSTS and HPKP,

identifying various misconfigurations in preloaded domains as well

as Alexa’s Top 1M. Mendoza et al. [63] examined HTTP header

inconsistencies between websites and their mobile counterparts,

and reported cases of mismatches in set cookie flags. Stock et al. [83]

presented a longitudinal study on the Web’s evolution and, among

other things, measured the adoption of security mechanisms. While

we leverage certain aspects of these studies [52], our goal is not

to evaluate these mechanisms in a generic context; instead, we

evaluate the deployment of the relevant mechanisms and how they

either enable or prevent session hijacking specifically.

SSO and sessions. Several studies have focused on SSO-related

vulnerabilities. Zhou and Evans [96] implemented SSOScan, a tool

that detected vulnerabilities in Facebook’s SSO scheme and found

that of the 1,660 audited websites, 146 leaked credentials and 202

misused them. While SSOScan handles SSO authentication flows,

several issues render it unsuitable for our study; however, we do in-

corporate one of their heuristics in our framework. Mainly, our sys-

tem needs to handle non-SSO websites, which account for the vast

majority of sites we audit (∼92%); this necessitates more advanced

and robust form-handling capabilities to address the more complex

and diverse nature of non-SSO registration. For instance, SSOScan

only uses an input element’s id and name attributes to infer its type,
while we leverage all of its attributes, dedicated label elements,

as well as the input’s preceding text as possible labels. Also, since

SSOScan processes all input elements of a page at once, there is a

chance that it uses an unrelated submit button; we avoid this by

processing each form separately. Finally, if SSOScan is not able to

locate a conventional submit button it will not be able to submit the

form, while our system attempts to do so via Selenium’s submit
method. For SSO workflows, we identified several challenges that

SSOScan was not able to handle. For instance, SSOScan’s oracle

relies on the SSO login button not being displayed after logging in,

which, as aforementioned, is not always the case. We address this

by separating our SSO and SSO Login oracles. In addition, SSOScan

operates only on the homepage for locating candidate elements,

while we employ a crawling approach to obtain better coverage.

Finally, their tool only considers English sites.

Fett et al. [42] proposed and evaluated a formal model of the

OAuth 2.0 protocol. Wang et al. [90] employed differential testing

to identify logic flaws in SSO implementations and found several

popular IdPs and RPs to be vulnerable. Calzavara et al. [26] im-

plemented a lightweight browser-side monitor for web protocols

(e.g., OAuth) that uses formalized protocol specifications to enforce

confidentiality and integrity checks. Yang et al. [93] used symbolic

execution to audit SSO SDK libraries and discovered seven classes

of vulnerabilities in 10 SDKs. Zuo et al. [98] proposed a tool to

identify vulnerable authorization implementations in mobile apps,

which relied on differential traffic analysis for identifying fields of

interest in exchanged messages. They used Facebook’s SSO to audit

∼5K apps (306 were vulnerable). They also explored data leakage

in mobile apps [97] that use a cloud-based back-end, stemming

from key misuse and authorization flaws. However, their leakage

exploration focuses on a very limited set of information and they

manually setup an account on only 30 apps. Ghasemisharif et al. [44]

demonstrated that SSO magnifies the scale and stealthiness of ac-

count hijacking, while rendering remediation impossible in most

cases. While we use SSO as an alternative way for registering test

accounts, identifying flaws in SSO implementations and specifica-

tions is not our objective. Nonetheless, these studies shed light on

a different problem that can lead to session hijacking.

7 CONCLUSIONS
We developed a completely automated auditing framework for web

apps that detects authentication and authorization flaws that re-

volve around the handling of cookies and stem from the incorrect,

incomplete, or non-existent deployment of appropriate security

mechanisms. Our framework is comprised of a series of modules

that include novel mechanisms to differentially analyze web apps,

assess the deployment of securitymechanisms, and detect what user

data is exposed. At the heart of our framework lies a custom browser

automation tool designed for robust and fault-tolerant black-box

interaction with web apps. We used our framework to conduct the

largest study on session hijacking to date and audit 25K domains,

leading to a series of alarming findings. Despite the increasing

adoption of HTTPS, HSTS is rarely deployed (correctly or at all),

and ∼11K domains are vulnerable to eavesdropping attacks that

enable partial or full access to users’ accounts. Furthermore, 23% of

domains are susceptible to cookie hijacking through JavaScript, the

majority of which also include third party scripts that execute in

the first party origin. We also demonstrated how hijacked cookies

allow access to sensitive and personal user information though var-

ious avenues of exposure. Our study reveals that cookie hijacking

remains a severe and pressing threat, as adoption of appropriate

security mechanisms remains limited and developers continue to

struggle with correct deployment. In an effort to shed light on the

scale of this threat, guide remediation efforts, and further incen-

tivize the adoption of security mechanisms, we have managed to

directly notify ∼43% of the affected domains and will also deploy a

service for providing reports.
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A APPENDIX
A.1 Browser Automation
Unexpected Alerts. If an alert popup appears and an Unexpected-
AlertPresentException is raised during the invoked method, the

execution context is switched temporarily to the alert box, which is

then dismissed, and the method is retried. To prevent other alerts

from appearing in the current page’s context, the window.alert
method is overridden.

Retry mode. We have developed a retry mode, which is used

by XDriver whenever it needs to perform an action it can retry in

case of failure; this is done without having to return control back

to the caller, e.g., when a page’s links or login forms are requested.

Specifically, if an exception is raised while performing the operation,

XDriver will retry the operation for a certain amount of times before

raising the exception or returning a default value.

Built-in crawler.Our custom browser automation tool includes

a built-in crawler for streamlining crawl-based tasks, a functional-

ity that is especially vital in security-related studies. In our frame-

work’s context it is useful for our URLDiscovery and PrivacyAu-

ditor modules for crawling and processing websites. Modules that

want to initiate a crawl only need to call the crawl_init method

with the desired configuration options and then iteratively call the

crawl_next method, where all logic of the crawl is transparently

implemented. The following configuration options are currently

supported by our system: (i) Crawl depth, (ii) DFS or BFS mode, (iii)

optional support for a set of regular expressions that dictate which

URLs and even subdomains to follow or not follow (e.g., focus only

on login related URLs or crawl a specific subdomain), and (iv) an

optional break function that is applied after every fetched URL to

determine whether the crawl should stop (e.g., if a specific type of

form is found).

Return values. Additionally, to simplify the checks that the

caller modules have to make for determining whether a requested

operation was successful, we refrain from raising Selenium-level

exceptions and, instead, return default boolean values. Only in

cases where our handling mechanisms cannot resolve an issue we

consider the exception to be fatal and raise it. For instance, when a

module attempts to interact with an element that is not currently

interactable (e.g., clicking an invisible element) a False value is

returned instead of raising the default ElementNotVisibleExcep-
tion.

A.2 Attack Workflow Statistics
In Figure 4 we plot the number and percentages of domains pro-

cessed during each phase of our auditing procedure’s workflow.

First, our system identifies appropriate account signup or login

pages for ∼13.4% of all the domains included in our dataset. Next,

Algorithm 1 CookieAuditor algorithm
1: function Audit

2: critical_cookies← {
3: ’secure’ ← [

′cookieA′,′ cookieB′, ...],
4: ’httpOnly’← [

′cookieD′,′ cookieF ′, ...], }
5: vulnerable← { ’secure’← NULL,
6: ’httpOnly’← NULL, }
7: tested← [ ]

8: for attr, cookies in critical_cookies do
9: if cookies.is_empty() then
10: vulnerable[attr]← True
11: else
12: for tested_attr in tested do
13: tested_set ← critical_cookies[tested_attr]
14: if cookies == tested_set then
15: vulnerable[attr]← vulnerable[tested_attr]
16: else if vulnerable[tested_attr] AND
17: cookies.is_subset(tested_set) then
18: vulnerable[attr]← True
19: end if
20: end for
21: if vulnerable[attr] == NULL then
22: vulnerable[attr] = EVAL(cookies )
23: end if
24: end if
25: tested.append (attr)
26: end for
27: return vulnerable
28: end function
29: function Eval(cookie_set)

30: BROWSER.r emove_cookies (cookie_set)
31: BROWSER.r ef r esh ()
32: return loдin_oracle ()
33: end function

the account creation process successfully completes for almost 12%

of those domains. As discussed in Section 5, the automated account

creation process is the biggest challenge for our framework due to

two reasons. First, the registration process may include predicates

that significantly complicate the automated input generation due

to input format constraints. For instance, the registration may in-

clude a mandatory field (e.g., postal address) that requires a valid

value for a specific location/country. Iteratively testing different

input formats can prohibitively increase the duration of the audit-

ing process at the scale of our analysis. Second, registration might

require access to a specific resource (e.g., phone number or credit

card) that is not feasible to obtain for a study of our scale. After

the account creation, we find that over half of the audited domains

fail to correctly protect their cookies and are susceptible to one of

the attacks covered by our threat model (as inferred by our Cookie

Auditor module presented in Algorithm 1). The remaining modules

are highly effective and infer the authentication cookies and de-

tect identifier leakage in the vast majority of the audited domains.

The failures in these modules are attributed to websites timing out

(or being generally unresponsive) after several auditing tests and

network failures. Also, when re-evaluating these domains other

factors can affect the execution of our modules, such as our test

account being deactivated, expired domains etc.

False negatives. To obtainmore insights about our framework’s

effectiveness we perform an indicative experiment where we inves-

tigate the false negative rates (FN) of the different modules in our

system. Specifically, we randomly sample 20 websites per module,

where the module’s execution did not complete successfully, and

manually inspect whether these failures were actual true negatives

or not. For our URL discovery module, we identified only four FNs,

i.e. in four cases there was a login option that our system failed

to detect. Our generic account setup component yielded 3 FNs, i.e.



Figure 4: Success rate for different workflow phases.

we successfully signed up and/or logged in the website, but were

not able to infer the state. Similarly, the SSO module had 5 FNs.

The Cookie Auditor yielded zero FN, meaning that there was not a

single case where our system identified a website as secure against

an attack, while it really was vulnerable. Finally, the Privacy Audi-

tor had 4 FNs, i.e. there was account information that we provided

during the signup process that was not detected as being leaked.

We did not measure the Authentication Cookies FN rates, as man-

ually identifying all authentication cookies and combinations is

prohibitively time consuming or even infeasible in many cases.

URL discovery effectiveness. As mentioned, our URL discov-

ery module initially explores the URLs provided by [44] before

falling back to our own crawling approach. As such, it is of interest

to quantify how useful this dataset was and, more importantly,

how effective our system was in cases where it had to employ our

own approach. For all the websites where we identified a signup

option, 23.1% were fully discovered using the dataset from [44],

while for the remaining 76.9% we had to fall back to crawling the

websites (43.1% were included in both datasets, while 33.8% were

not included in [44]).

Failed registrations. In an attempt to better understand the

reasons behind failed registrations, we manually inspected 50 ran-

domly selected websites. In 22 cases, there was some form of an

anti-bot challenge that our system was not able to solve and, thus,

could not proceed with registration. In 23 websites one of the fields

was rejected due to inappropriate formatting, e.g. mobile phones,

addresses, passwords etc. Finally, the remaining 5 websites failed

due to unexpected or complex form behavior, e.g. after filling in a

specific field, a custom drop down list appeared that also needed to

be detected and filled out.

A.3 Manual Session Hijacking Verification.
Table 6 breaks down the results from our manual session hijacking

validation experiment. We observe that in all but one cases, the

Table 4: Most common categories of susceptible domains.

Category #domains Category #domains

Online Shopping 3,725 Soft/Hardware 252

Business 1,117 Sports 234

Marketing/Merch. 1,100 Job Search 229

Internet Services 642 Pornography 194

Entertainment 586 News 187

Education/Reference 558 Real Estate 178

Blogs/Wiki 393 Public Info 153

Fashion/Beauty 322 Health 148

access we obtain through our cookie hijacking attacks leads to

the exposure of sensitive information and functionality even if we

only obtain partial access. This includes the ability to view and edit

personal information, as well as execute site-specific functionality.

As expected, inmost cases we cannot (fully) change account settings

(e.g., password, email). This is due to the fact that such operations

typically require the user to retype their password, which is not

known to the cookie-hijacking attacker. Nonetheless, we found that

multiple domains allow the attacker to change the password even

without knowledge of the current password.

A.4 Domain Categorization
Domain categorization.Table 4 reports the top domain categories

(classified using McAfee’s URL Ticketing System [14]) that are

vulnerable to at least one attack. We find that online shopping is

the most prevalent category of susceptible domains, highlighting

the privacy threat of cookie hijacking. These services include a

plethora of personal data (e.g., address), while. recommendations

and prior purchases can reveal sensitive user traits (e.g., sexual

orientation, religion).We also find 148 and 194 domains that provide



Table 5: The 20 most popular vulnerable domains.

Domain Eavesdropping JS cookie stealing

amazon.com ✓ ✓
reddit.com ✗ ✓
twitch.tv ✗ ✓
mail.ru ✓ ✓
aliexpress.com ✓ ✗

alipay.com ✓ ✓
bing.com ✗ ✓
amazon.co.jp ✓ ✓
ebay.com ✓ ✓
msn.com ✓ ✗

xvideos.com ✓ ✓
wordpress.com ✓ ✗

amazon.in ✓ ✓
xhamster.com ✓ ✗

amazon.co.uk ✓ ✓
pixnet.net ✓ ✓
bongacams.com ✓ ✗

roblox.com ✓ ✗

nytimes.com ✓ ✓
soundcloud.com ✗ ✓

health-related functionality and adult content respectively,. which

potentially enable access to extremely sensitive user data.

A.5 Popular Domains
Table 5 presents the 20 most popular domains found vulnerable

during our study, which span various categories (e.g., e-commerce,

blogging, pornography etc.). We manually verified the feasibility

of session hijacking attacks in every one of these domains. It is

important to note that all of these services have a massive user

base, most likely employ professional development teams and may

even have dedicated security teams, yet they still expose their users

to significant threat. Our PrivacyAuditor module also uncovered

several interesting findings. One domain leaked the password hash

in a cookie (avgle.com), two leaked the phone number in the page’s

source (123rf.com, naukri.com) and one in the local storage (south-

west.com). One domain leaked the user’s postal address in the

source (asus.com) and two leaked the user’s workplace in the source

(alibaba.com, mailchimp.com).

Another interesting observation is that even major services like

Amazon struggle with the correct deployment of security mecha-

nisms. Specifically, we found that while amazon.com deploys HSTS,

it does so in an incomplete manner. The policy is only set on the

“www” subdomain and thus the authentication cookies we have

identified are leaked over unencrypted connections to the base

domain, since their domain attribute is set to “.amazon.com”.



Table 6: Manually validated domains and hijacking capabilities.

Domain Read Write Settings Exposed information & functionality

Top-1K (hand-picked)

amazon.com ✗
View/edit cart, ad preferences, vouchers/coupons, shopping list, email subscriptions,

deals & notifications, browsing history and recommendations

aliexpress.com ✗
View/edit favorite stores, wish list, cart, profile photo, full name, follow sellers. View

messages, order history, coupons

ebay.com ✗
View/edit cart, watchlist, saved searches/sellers, messages, address, profile photo. View

recently viewed items, active bids/offers, purchase history, own items for sale

alibaba.com ✗
View/edit cart, full name, phone number, gender, address, job information, favorites,

profile photo. View messages, orders, transactions, contacts, recommendations

reddit.com ✗
View/edit posts, comments, saved, display name, about section, profile photo, inbox,

email notifications, block users

bing.com ✗ View/edit search history, interests. View first name, profile photo

bestbuy.com ✗ View/edit cart, saved items. View shopping history, orders

banggood.com ✗
View/edit cart, wishlist, address, full name, gender, phone number, messages, reviews,

comments, download full activity record. View orders, coupons, gifcards, search history

wish.com ✗
View/edit cart, wishlist, full name, birthdate, email, notification settings. View orders,

recently viewed items

cloudflare.com ✗ None. The attack only succeeds when performed from the same PC

Top-1K (randomly selected)
indeed.com ✗ View/edit saved job offers, job applications, scheduled interviews, visited jobs

hotels.com ✗ View/edit favorties, searches

vidio.com ✓
View/edit phone number, comments, followed channels, password. View transaction

history, watch history

nature.com ✗ View/edit full name, professional information, subscriptions. View email

sciencedirect.com ✗
View/edit full name, email, job information, phone number, address. View recommen-

dations, history

1fichier.com N/A View/edit files, folders, full name, address, phone number.

bitly.com ✗
View/edit bitlinks, link statistics, email address, delete account. View API key, session

history (and disconnect all sessions)

cdiscount.com ✗
View/edit subscriptions, wish/favorites list, address, phone number. View email, birth-

date, orders, messages, vouchers, credit card info

elsevier.com ✗
View/edit cart, full name, email, address, phone number, partial payment information,

add new credit card

espncricinfo.com ✗ View/edit full name, email, phone number, gender, address, delete account

Any-rank (randomly selected)
sendatext.co N/A View/edit SMS texts (sent and replies), calls, address book

metzlerviolins.com ✓ View/edit address, cart, wish list, password. View orders

swotanalysis.com ✗ View/edit teams and members, billing history, projects

kokpit.aero ✓ View/edit full name, email, phone number, password, comments

brauchekondome.com ✗ View/edit full name, address. View email, birth date, orders

soccergarage.com ✗ View/edit username, email, company name, address, cart, wish list, delete profile

packlane.com N/A View orders, saved designs

doggiesolutions.co.uk ✗ View/edit full name, email, address, cart, delete profile. View order history

jellyfields.com ✓ View/edit email, username, website, favorites, password

helmetstickers.com ✓ View/edit full name, address, cart, password, delete profile. View order history

Access: full , partial , none
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